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Abstract

This paper presents issues and algorithms for the problem of multiple source tracking with a
network of aeroacoustic sensors. We study fusion of data from sensors that are widely separated,
and we give particular attention to the important issues of limited communication bandwidth
between sensor nodes, effects of source motion, coherence loss between signals measured at
different sensors, signal bandwidth, and noise. We compare the tracking performance of vari-
ous schemes, including joint (coherent) processing of all sensor data, as well as data-reduction
schemes that employ distributed computation and reduced communication bandwidth with a
fusion center. Our analysis provides a quantification of the potential gain in source tracking
accuracy that is achievable with greater communication bandwidth and joint processing of sen-
sor data. We show that the potential gain in accuracy depends critically on the scenario, as
determined by the source motion parameters, signal coherence between sensors, bandwidth of
the source signals, and noise level. For scenarios that admit increased accuracy with joint pro-
cessing, we present a bandwidth-efficient algorithm that involves beamforming at small-aperture
sensor arrays combined with time-delay estimation between widely-spaced sensor arrays.

1 INTRODUCTION

We are concerned with tracking moving sources using a network of aeroacoustic sensors. We
assume that the sensors are placed in an “array of arrays” configuration containing several small-
aperture arrays distributed over a wide area. Each array contains local processing capability and a
communication link with a fusion center. A standard approach for estimating the source locations
involves bearing estimation at the individual arrays, communication of the bearings to the fusion
center, and processing of the bearing estimates at the fusion center with a tracking algorithm
(e.g., see [1, 2, 3, 4, 5]). This approach is characterized by low communication bandwidth and low
complexity, but the localization accuracy may be inferior to the optimal solution in which the fusion
center jointly processes all of the sensor data. The optimal solution requires high communication
bandwidth and high processing complexity. The amount of improvement in localization accuracy
that is enabled by greater communication bandwidth and processing complexity is dependent on the
scenario, which we characterize in terms of the source motion parameters, the power spectra (and
bandwidth) of the signals and noise in the sensor data, the coherence between the source signals
received at widely separated sensors, and the observation time (amount of data). We present a
framework in this paper to identify scenarios that have the potential for improved localization

bonta
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accuracy relative to the standard bearings-only tracking method. We propose an algorithm that is
bandwidth-efficient and nearly optimal that uses beamforming at small-aperture sensor arrays and
time-delay estimation between widely-separated sensors.

The sensor signals are modeled as Gaussian random processes, which allows deterministic as
well as random propagation effects to be included. Our previous work [6, 7] considered a single
source with fixed position (no motion). We extend the analysis in this paper to moving sources
that follow a parametric motion model.

This paper is organized as follows. The sensor data model is presented in Section 2 for the
case of a non-moving source. Results on time-delay estimation with partially-coherent signals are
presented in Section 3, which summarizes and extends the development in [7]. The sensor data
model is extended to moving sources in Section 4. An algorithm is presented in Section 5, an
example with measured aeroacoustic data is included in Section 6, and concluding remarks are
given in Section 7.

2 DATA MODEL FOR A NON-MOVING SOURCE

A model is formulated in this section for the discrete-time signals received by the sensors in dis-
tributed arrays. To begin, we consider a single non-moving source that is located at coordinates
(xs, ys) in the (x, y) plane. Then H arrays are distributed in the same plane, as illustrated in
Figure 1. Each array h ∈ {1, . . . ,H} contains Nh sensors, and has a reference sensor located at
coordinates (xh, yh). The location of sensor n ∈ {1, . . . , Nh} is at (xh + ∆xhn, yh + ∆yhn), where
(∆xhn,∆yhn) is the relative location with respect to the reference sensor. If c is the speed of
propagation, then the propagation time from the source to the reference sensor on array h is

τh =
dh

c
=

1
c

[
(xs − xh)2 + (ys − yh)2

]1/2
, (1)

where dh is the distance from the source to array h. We model the wavefronts over individual array
apertures as perfectly coherent plane waves. Then in the far-field approximation, the propagation
time from the source to sensor n on array h is expressed by τh + τhn, where

τhn ≈ −1
c

[
xs − xh

dh
∆xhn +

ys − yh

dh
∆yhn

]
= −1

c
[(cosφh)∆xhn + (sinφh)∆yhn] (2)

is the propagation time from the reference sensor on array h to sensor n on array h, and φh is the
bearing of the source with respect to array h. Note that while the far-field approximation (2) is
reasonable over individual array apertures, the wavefront curvature that is inherent in (1) must be
retained in order to model wide separations between arrays.

The time signal received at sensor n on array h due to the source will be represented as sh(t−τh−
τhn), where the vector of signals s(t) = [s1(t), . . . , sH(t)]T received at the H arrays are modeled as
real-valued, continuous-time, zero-mean, jointly wide-sense stationary, Gaussian random processes
with −∞ < t < ∞. These processes are fully specified by the H × H cross-correlation function
matrix

Rs(τ) = E{s(t + τ) s(t)T }, (3)

where E denotes expectation, superscript T denotes transpose, and we will later use the notation
superscript ∗ and superscript H to denote complex conjugate and conjugate transpose, respectively.
The (g, h) element in (3) is the cross-correlation function

rs,gh(τ) = E{sg(t + τ) sh(t)} (4)
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Figure 1: Geometry of non-moving source location and H distributed sensor arrays. A communi-
cation link is available between each array and the fusion center.

between the signals received at arrays g and h. The correlation functions (3) and (4) are equivalently
characterized by their Fourier transforms, which are the cross-spectral density functions

Gs,gh(ω) = F{rs,gh(τ)} =
∫ ∞

−∞
rs,gh(τ) exp(−jωτ) dτ (5)

and the associated cross-spectral density matrix

Gs(ω) = F{Rs(τ)}. (6)

The diagonal elements Gs,hh(ω) of (6) are the power spectral density (PSD) functions of the signals
sh(t), and hence they describe the distribution of average signal power with frequency. The model
allows the PSD to vary from one array to another to reflect propagation differences and source
aspect angle differences.

The off-diagonal elements of (6), Gs,gh(ω), are the cross-spectral density (CSD) functions for
the signals sg(t) and sh(t) received at distinct arrays g 
= h. In general, the CSD functions have
the form

Gs,gh(ω) = γs,gh(ω) [Gs,gg(ω)Gs,hh(ω)]1/2 , (7)

where γs,gh(ω) is the spectral coherence function for the signals, which has the property 0 ≤
|γs,gh(ω)| ≤ 1. We will elaborate the interpretation of signal coherence in Section 3, but co-
herence magnitude < 1 models random effects in the propagation paths from the source to arrays g
and h. Note that our assumption of perfect spatial coherence across individual arrays implies that
the random propagation effects have negligible impact on the intra-array delays τhn in (2) and the
bearings φ1, . . . φH .

The signal received at sensor n on array h is modeled as a sum of the delayed source signal and
noise,

zhn(t) = sh(t− τh − τhn) + whn(t), (8)

where the noise signals whn(t) are modeled as real-valued, continuous-time, zero-mean, jointly wide-
sense stationary, Gaussian random processes that are mutually uncorrelated at distinct sensors, and
are uncorrelated from the signals. That is, the noise correlation properties are

E{wgm(t+ τ)whn(t)} = rw(τ) δghδmn (9)
E{wgm(t + τ)sh(t)} = 0, (10)



where rw(τ) is the noise autocorrelation function, and the noise PSD is Gw(ω) = F{rw(τ)}. We
then collect the observations at each array h into Nh × 1 vectors zh(t) = [zh1(t), . . . , zh,Nh

(t)]T for
h = 1, . . . ,H, and we further collect the observations from the H arrays into a (N1 + · · ·+NH)× 1
vector

Z(t) =




z1(t)
...

zH(t)


 . (11)

The elements of Z(t) in (11) are zero-mean, jointly wide-sense stationary, Gaussian random pro-
cesses. We can express the CSD matrix of Z(t) in a convenient form with the following definitions.
The array manifold for array h at frequency ω is

ah(ω) =




exp(−jωτh1)
...

exp(−jωτh,Nh
)


 =




exp
[
j ω

c ((cos φh)∆xh1 + (sinφh)∆yh1)
]

...
exp

[
j ω

c ((cosφh)∆xh,Nh
+ (sinφh)∆yh,Nh

)
]

 , (12)

using τhn from (2) and assuming that the sensors have omnidirectional response to sources in the
plane of the array. Let us define the relative time delay of the signal at arrays g and h as

Dgh = τg − τh, (13)

where τh is defined in (1). Then the cross-spectral density matrix of Z(t) in (11) has the form

GZ(ω) =
(14)


a1(ω)a1(ω)HGs,11(ω) · · · a1(ω)aH(ω)H exp(−jωD1H)Gs,1H(ω)

...
. . .

...
aH(ω)a1(ω)H exp(+jωD1H )Gs,1H(ω)∗ · · · aH(ω)aH(ω)HGs,HH(ω)


+Gw(ω)I.

The source CSD functions Gs,gh(ω) in (14) can be expressed in terms of the signal spectral coherence
γs,gh(ω) using (7). Note that (14) depends on the source location parameters (xs, ys) through the
bearings φh in ah(ω) and the pairwise time-delay differences Dgh.

2.1 Cramér-Rao Bound (CRB)

The Cramér-Rao bound (CRB) provides a lower bound on the variance of any unbiased estimator.
The problem of interest is estimation of the source location parameter vector Θ = [xs, ys]T using T
samples of the sensor signals Z(0),Z(Ts), . . . ,Z((T − 1) ·Ts), where Ts is the sampling period. The
total observation time is T = T · Ts. Let us denote the sampling rate by fs = 1/Ts and ωs = 2πfs.
We will assume that the continuous-time random processes Z(t) are band-limited, and that the
sampling rate fs is greater than twice the bandwidth of the processes. Then Friedlander [8, 9] has
shown that the Fisher information matrix (FIM) J for the parameters Θ based on the samples
Z(0),Z(Ts), . . . ,Z((T − 1) · Ts) has elements

Jij =
T
4π

∫ ωs

0
tr

{
∂GZ(ω)

∂ θi
GZ(ω)−1∂GZ(ω)

∂ θj
GZ(ω)−1

}
dω, i, j = 1, 2, (15)

where “tr” denotes the trace of the matrix. The CRB matrix C = J−1 then has the property that
the covariance matrix of any unbiased estimator Θ̂ satisfies Cov(Θ̂)−C ≥ 0, where ≥ 0 means that
Cov(Θ̂)−C is positive semidefinite [10]. Equation (15) provides a convenient way to compute the
FIM for the distributed sensor array model as a function of the signal coherence between distributed
arrays, the signal and noise bandwidth and power spectra, and the sensor placement geometry. The
CRB is evaluated for various scenarios in [6, 7].



3 TIME-DELAY ESTIMATION (TDE)

Let us parameterize the model in (14) by the bearings φh and the time-delay differences Dgh. Then
we must address the issue of time-delay estimation with signals that are partially coherent when
|γs,gh| < 1. We consider this problem first for the case of H = 2 sensors, as illustrated in Figure 2a
with the differential time delay defined as D = D21. It follows from (14) that the CSD matrix of
the sensor data in Figure 2a is

CSD

[
z1(t)
z2(t)

]
= (16)

[
Gs,11(ω) e+jωDγs,12(ω) [Gs,11(ω)Gs,22(ω)]1/2

e−jωDγs,12(ω)∗ [Gs,11(ω)Gs,22(ω)]1/2 Gs,22(ω)

]
.

The signal coherence function γs,12(ω) describes the degree of correlation that remains in the
signal emitted by the source at each frequency ω after propagating to sensors 1 and 2. Since the
sensor signals are modeled as Gaussian random processes, the coherence loss can be equivalently
represented in terms of a “coherent” signal component s(t) and additional additive noise processes
n1(t), n2(t), as depicted in Figure 2b.1 The equivalence is

z1(t) = s1(t) + w1(t) = (h1 ∗ s)(t) + n1(t) + w1(t)
z2(t) = s2(t−D) + w2(t) = (h2 ∗ s)(t−D) + n2(t) + w2(t)

, (17)

where ∗ denotes convolution. The parameters in the CSD (16) are related to the filters Hi(ω) =
F{hi(t)}, i = 1, 2, the PSDs Gi(ω), i = 1, 2 of the noise processes2 ni(t), i = 1, 2 and the PSD
Gc(ω) of s(t) as follows:

H1(ω) = Gs,11(ω)1/2 (18)

H2(ω) =
γs,12(ω)∗

|γs,12(ω)|Gs,22(ω)1/2 (19)

PSD [s(t)] = Gc(ω) = |γs,12(ω)| (20)
PSD [n1(t)] = G1(ω) = Gs,11(ω) [1 − |γs,12(ω)|] (21)
PSD [n2(t)] = G2(ω) = Gs,22(ω) [1 − |γs,12(ω)|] . (22)

Note that we can define a “coherent” signal-to-noise (SNR) ratio at each sensor, based on the
coherent signal component in Figure 2b:

SNRc,i(ω) =
|γs,12(ω)|

1 − |γs,12(ω)| +
(

Gs,ii(ω)
Gw(ω)

)−1 ≤ |γs,12(ω)|
1 − |γs,12(ω)| , i = 1, 2. (23)

The coherent SNR is severely limited when there is coherence loss (|γs,12(ω)| < 1) between the
sensors, even if the source power is very large (Gs,ii(ω) → ∞).

1The equivalent model is developed in [7], and it is also discussed in the context of ultrasound image speckle in
[12].

2The processes n1(t), n2(t) are independent, zero mean, stationary Gaussian random processes that are indepen-
dent from the signals and noise w1(t), w2(t).
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Figure 2: (a) Time-delay estimation (TDE) problem for a non-moving source. (b) Representation
of partial coherence between s1(t), s2(t) as excess additive noise n1(t), n2(t).

3.1 TDE Performance Bounds

In this section, we summarize and further study performance bounds on time-delay estimation
(TDE) with partially coherent signals that were originally presented in [6, 7]. First, the CRB on
estimating the time-delay D in (16) is, using (15),

CRB(D) =
4π
T


∫ ωs

0

ω2 |γs,12(ω)|2 Gs,11(ω)Gs,22(ω)
Gw(ω)2

1 + Gs,11(ω)
Gw(ω) + Gs,22(ω)

Gw(ω) + [1 − |γs,12(ω)|2] Gs,11(ω)Gs,22(ω)
Gw(ω)2

dω



−1

(24)

=
4π
T

[∫ ωs

0

ω2 SNRc,1(ω) · SNRc,2(ω)
1 + SNRc,1(ω) + SNRc,2(ω)

dω

]−1

, (25)

where T is the total observation time of the sensor data and SNRc,i(ω), the coherent SNR, is
defined in (23). Let us consider the case in which the signal PSDs, noise PSDs, and coherence are
flat (constant) over a frequency band from f1 to f2 Hz, and let us define SNRi = Gs,ii/Gw, i = 1, 2.
Then the CRB in (24) reduces to3

CRB(D) =
3

8π2T
(
f3
2 − f3

1

)
[

1
|γs,12|2

− 1 +
1

|γs,12|2
· 1 + SNR1 + SNR2

SNR1 SNR2

]
(26)

>
3

8π2T
(
f3
2 − f3

1

)
[

1
|γs,12|2

− 1

]
, (27)

3The CRB in (26) can also be derived from results in [11] based on the equivalent model in (18)-(22).



where (27) is the high-SNR limit. Note that partially coherent signals |γs,12| < 1 limit the TDE
accuracy in a way that cannot be improved by increased source power. Improved TDE accuracy
is obtained with partially coherent signals by increased observation time T or increased signal
bandwidth [f1, f2]. The source signal bandwidth is not controllable in passive source localization
applications, so increased observation time is the only means for improving the accuracy of TDE
with partially coherent signals. Source motion becomes more important during long observation
times, and we add motion into the model in Section 4.

It is well-known that the CRB on TDE is achievable only when the coherent SNR at the two
sensors exceeds a threshold [13]. For the case of TDE with partially coherent signals, we showed in
[7] that a similar threshold phenomenon occurs with respect to coherence. That is, the coherence
must exceed a threshold in order to achieve the CRB (24) on TDE. We can state the formula
for threshold coherence for the following scenario. The signal and noise spectra are flat over a
bandwidth of ∆ω rad/sec centered at ω0 rad/sec, and the observation time is T seconds. Further,
assume that the signal PSDs are identical at each sensor, and define the following constants for
notational simplicity:

Gs,11(ω0) = Gs,22(ω0) = Gs, Gw(ω0) = Gw, γs,12(ω0) = γs. (28)

Then combining the equivalent model (18)-(22) with previously developed Ziv-Zakai bounds on
TDE [13], we can show that the following SNR-like expression characterizes the performance of
time delay estimation with partially coherent signals:

SNR(γs) =

[
1

|γs|2
(
1 +

1
(Gs/Gw)

)2

− 1

]−1

. (29)

The threshold SNR for CRB attainability [13] is a function of the time-bandwidth product
(

∆ω·T
2π

)
and the fractional bandwidth

(
∆ω
ω0

)
,

SNRthresh =
6

π2
(

∆ωT
2π

) ( ω0

∆ω

)2
[
ϕ−1

(
1
24

(
∆ω

ω0

)2
)]2

, (30)

where ϕ(y) = 1/
√

2π
∫∞
y exp(−t2/2) dt. It follows that the threshold coherence value is

|γs|2 ≥

(
1 + 1

(Gs/Gw)

)2

1 + 1
SNRthresh

, so |γs|2 ≥ 1
1 + 1

SNRthresh

as
Gs

Gw
→ ∞. (31)

For a specific narrowband time delay estimation scenario, the threshold SNR for CRB attainability
is given by (30), and (31) provides a corresponding threshold coherence for CRB attainability. Since
|γs|2 ≤ 1, (31) is useful only if Gs/Gw > SNRthresh.

Figure 3 contains plots of the threshold coherence in (31) as a function of the time-bandwidth
product

(
∆ω·T

2π

)
, SNR Gs

Gw
, and fractional bandwidth

(
∆ω
ω0

)
. Note that Gs

Gw
= 10 dB is nearly equiv-

alent to Gs
Gw

→ ∞. The variation of threshold coherence with fractional bandwidth is illustrated in
Figure 3d. We note that very large time-bandwidth product is required to overcome coherence loss
when the fractional bandwidth is small at 0.1. For a fixed threshold coherence value, such as 0.7,
each doubling of the fractional bandwidth reduces the required time-bandwidth product by about
a factor of 10.
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Figure 3: Threshold coherence value from (31) versus time-bandwidth product
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)
and SNR

Gs/Gw for fractional bandwidth values
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)
(a) 0.1, (b) 0.5, (c) 1.0. In (d), the high SNR curves

Gs/Gw → ∞ are superimposed for several values of fractional bandwidth.



Let us examine a narrowband signal scenario that is typical in aeroacoustics, with center fre-
quency fo = ωo/(2π) = 50 Hz and bandwidth ∆f = ∆ω/(2π) = 5 Hz, so the fractional bandwidth is
∆f/fo = 0.1. From Figure 3a, coherence |γs| = 0.8 requires time-bandwidth product ∆f · T > 200,
so the necessary time duration T = 40 sec for TDE is impractically large for most cases with
moving sources.

Increased time-bandwidth product of the observed signals is necessary to make TDE feasible in
environments with signal coherence loss. As discussed with respect to the CRB, only the observation
time is controllable in passive applications, thus leading us to consider source motion models in
Section 4 for use during long observation intervals. The remainder of this section continues to focus
on non-moving sources, with simulation results presented in Section 3.2 that verify the CRB and
threshold coherence values for TDE, and a discussion in Section 3.3 that extends the H = 2 sensor
case of this subsection to TDE with H > 2 sensors.

3.2 TDE Simulation Examples

Consider TDE at H = 2 sensors with varying signal coherence γs. Our first simulation example
involves a signal with reasonably wide bandwidth, ∆f = 30 Hz centered at f0 = 100 Hz, so the
fractional bandwidth ∆f/f0 = 0.3. The signal, noise, and coherence are flat over the frequency
band, with SNR Gs/Gw = 100 (20 dB). The signals and noise are band-pass Gaussian random
processes. The sampling rate in the simulation is Fs = 104 samples/sec, with T = 3× 104 samples,
so the time interval length is T = 3 sec.

Figure 4a displays the simulated RMS error on TDE for 0.2 ≤ γs ≤ 1.0, along with the
corresponding CRB from (26). The simulated RMS error is based on 100 runs, and the TDE is
estimated from the location of the maximum of the cross-correlation of the sensor signals. The
threshold coherence for this case is 0.41, from (31). Note in Figure 4a that the simulated RMS
error on TDE diverges sharply from the CRB very near to the threshold coherence value of 0.41,
illustrating the accuracy of the analytical threshold coherence in (31).

Next we consider TDE with three different signals:

1. A narrowband signal with ∆f = 2 Hz centered at f0 = 40 Hz. We refer to this as “1
harmonic” (it is the fundamental frequency of the signals defined next).

2. “2 harmonics” at 40 and 80 Hz, with bandwidth ∆f = 2 Hz at each harmonic.

3. “5 harmonics” at 40, 80, 120, 160, 200 Hz, with bandwidth ∆f = 2 Hz at each harmonic.

The signal, noise, and coherence are flat over each frequency band, with SNR Gs/Gw = 100 (20
dB), and the signals and noise are band-pass Gaussian random processes. The sampling rate in the
simulation is Fs = 104 samples/sec, with T = 2× 104 samples, so the time interval length is T = 2
sec.

Figures 4b-d display the simulated RMS error on TDE (based on 1, 000 runs) for coherence
values 0.7 ≤ γs ≤ 1.0. As in the previous example, the TDE is obtained by cross-correlation. The
threshold coherence is defined only for the “1 harmonic” signal, and the threshold coherence value
is ≈ 1. Figure 4b illustrates the divergence of the simulated RMS error from the CRB, except at
γs = 1.

Figures 4c and d display the results for the signals with “2 harmonics” and “5 harmonics.” The
additional harmonics enable accurate TDE for lower coherence values, but we cannot use (31) to
compute the analytical threshold coherence for the harmonic signals. The “approximate threshold
coherence” values indicated in Figures 4c and d are computed as follows. For the K harmonics,
suppose the total bandwidth of all harmonics, ∆f = K · 2 Hz, is centered at the fundamental



frequency f0 = 40 Hz. The approximate threshold coherence values, 0.95 in Figure 4c and 0.50
in Figure 4d, are considerably lower than the actual points of divergence from the CRB. Not
surprisingly, the total bandwidth that is “spread” across the harmonics is less useful for overcoming
signal coherence loss than an equivalent bandwidth concentrated at the fundamental f0 = 40 Hz.
Narrowband and harmonic signals are generally difficult for TDE due to ambiguous peaks in the
cross-correlation function.

3.3 TDE with H > 2 Sensors

Weinstein [14] has studied TDE with a network of H > 2 sensors. In this section, we extend his anal-
ysis to partially coherent signals, and show that pairwise TDE is essentially optimum for cases of
interest with reasonable signal coherence between sensors. By pairwise TDE we mean that one sen-
sor, say H, is identified as the reference, and only the H−1 time differences D1H ,D2H , . . . ,DH−1,H

are estimated. Under the conditions described below, these H − 1 estimates are nearly as accurate
for source localization as forming all pairs of TDEs Dgh for all g < h. Weinstein’s analysis [14] is
valid for moving as well as non-moving sources.

Assuming equal SNRc at all sensors, equal coherence γs between all sensor pairs, and H ·SNRc �
1, we can show that forming all TDE pairs Dgh potentially improves the source localization variance
relative to pairwise processing by the factor

V =
H
(
1 + 2 · γs

1−γs

)
2
(
1 +H · γs

1−γs

) . (32)

Clearly V → 1 as γs → 1, and V < (3H)/[2(1 + H)] < 1.5 for γs > 0.5. Therefore the potential
accuracy gain from processing all sensor pairs is negligible when the coherence exceeds the threshold
values that are typically required for TDE.

This result suggests strategies with moderate communication bandwidth that potentially achieve
nearly optimum localization performance. The reference sensor, H, sends its raw data to all other
sensors. Those sensors h = 1, . . . ,H − 1, locally estimate the time differences D1,H , . . . ,DH−1,H ,
and these estimates are passed to the fusion center for localization processing with the bearing es-
timates φ1, . . . , φH . A modified scheme with more communication bandwidth but more centralized
processing is for all H sensors to communicate their data to the fusion center, with TDE performed
at the fusion center.

4 DATA MODEL FOR A MOVING SOURCE

Our objective in this paper is to quantify scenarios in which jointly processing data from widely-
spaced sensors has the potential for improved source localization accuracy, compared with incoher-
ent triangulation/tracking of bearing estimates. We established in Section 2 that the potential for
improved accuracy depends directly on TDE between the sensors. Then we showed in Section 3
that TDE with partially-coherent signals is feasible only with an increased time-bandwidth product
of the sensor signals. This leads to a constraint on the minimum observation time, T , in passive
applications where the signal bandwidth is fixed. If the source is moving, then approximating
it as non-moving becomes poorer as T increases, so modeling the source motion becomes more
important.

Approximate bounds are developed in [15] and [16] that specify conditions of validity for non-
moving and moving source models. Let us consider H = 2 sensors with Doppler values α2 > α1 (see
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Figure 4: Comparison of simulated RMS error for TDE with CRBs and threshold coherence value.
(a) Wideband signal with ∆f = 30 Hz centered at f0 = 100 Hz. (b)-(d) Narrowband signal with
∆f = 2 Hz, fundamental frequency f0 = 40 Hz and 1, 2, and 5 harmonic components, respectively.



(46) for the definitions of α1, α2). If fmax (Hz) is the maximum signal frequency that is processed,
then TDE estimation accuracy is not seriously affected by ignoring source motion, as long as the
time interval T satisfies

T � 1

fmax

(
α2
α1

− 1
) . (33)

Taking typical parameters for ground vehicles in aeroacoustics, let us consider a vehicle moving
at 5% the speed of sound (15 m/sec), with radial motion that is in opposite directions at the two
sensors. Then α2/α1−1 ≈ 0.1 and (33) becomes T � 10/fmax. For fmax = 100 Hz, the requirement
is T � 0.1 sec, which according to the analysis in Section 3.1 yields insufficient time-bandwidth
product for partially coherent signals that are typically encountered. Thus motion modeling and
Doppler compensation are critical, even for aeroacoustic sources that move more slowly than in
this example.

In this section, we extend the non-moving source model from Section 2 using first-order motion
models (see (34),(35),(49)). The first-order motion models are simple and accurate over larger
time intervals T compared with the non-moving source model. However, accurate modeling of
more complex trajectories over longer time intervals requires higher-order polynomial models, with
added complexity. The source position trajectory is modeled as a straight line with constant velocity
over an interval of length T ,

xs(t) = xs,0 + ẋs · (t− t0), t0 ≤ t ≤ t0 + T (34)
ys(t) = ys,0 + ẏs · (t− t0), (35)

so ẋs, ẏs are the velocity components. The source trajectory parameter vector is

Θ = [xs,0, ẋs, ys,0, ẏs]T , (36)

and the (time-varying) propagation time from the source to the sensors on array h follows from (1)
and (2):

τh(t) =
dh(t)
c

=
1
c

[
(xs(t)− xh)2 + (ys(t)− yh)2

]1/2
(37)

τhn(t) ≈ −1
c

[
xs(t)− xh

dh(t)
∆xhn +

ys(t) − yh

dh(t)
∆yhn

]

= −1
c
[(cos φh(t))∆xhn + (sinφh(t))∆yhn] . (38)

The bearing and bearing rate are related to the source motion parameters Θ as

φh(t) = tan−1
[
xs(t)− xh

ys(t)− yh

]
= tan−1

[
xs,0 + ẋs · (t− t0) − xh

ys,0 + ẏs · (t− t0) − yh

]
(39)

φ̇h(t) =
ẏs cosφh(t) − ẋs sinφh(t)

dh(t)
. (40)

The radial velocity of the source with respect to array h is

vr,h(t) = ẋs cosφh(t) + ẏs sinφh(t). (41)

We can insert (34) and (35) into (37) to obtain the following approximation for the propagation
time to array h:

τh(t) = τh(t0)
[
1 +

2 · cosφh(t0) · ẋs · (t− t0)
dh(t0)

+
2 · sinφh(t0) · ẏs · (t− t0)

dh(t0)

]1/2

(42)

≈ τh(t0) +
vr,h(t0)

c
· (t− t0), (43)



where dh(t0) and vr,h(t0) are the source distance and radial velocity at the start of time interval
t = t0. The approximation (43) is valid as long as the total motion during the time interval T is
much less than the range, i.e., |2 ẋsT | � dh(t0) and |2 ẏsT | � dh(t0).

Next we use the approximation (43) and model the received signal at the reference sensor on
array h as

sh (t− τh(t)) = sh

[(
1 − vr,h(t0)

c

)
t− τh(t0) +

vr,h(t0) t0
c

]
(44)

= sh

(
αh t− τh(t0) +

vr,h(t0) t0
c

)
, t0 ≤ t ≤ t0 + T , (45)

where

αh = 1 − vr,h(t0)
c

= 1 − 1
c
[ẋs cosφh(t0) + ẏs sinφh(t0)] (46)

is the Doppler compression and

τh(t0) =
dh(t0)

c
=

1
c

[
(xs,0 − xh)2 + (ys,0 − yh)2

]1/2
(47)

is the propagation delay at the initial time t = t0. Without loss of generality, we set t0 = 0, so the
received signal at sensor n on array h is

sh (αh t− τh(0) − τhn(t)) , (48)

which is the extension of the signal component of (8) to the moving source case. Note from (2)
that τhn(t) depends on the source location only through the time-varying bearing φh(t), which we
approximate with a first-order model

φh(t) ≈ φh(t0) + φ̇(t0) · (t− t0), t0 ≤ t ≤ t0 + T . (49)

For a single array h, the Doppler compression αh and time delay τh(t0) have negligible effect on
estimation of the the intra-array delays τhn(t), since αh and τh(t0) are identical for each n =
1, . . . , Nh. Thus each array can be processed separately to estimate the bearings φ1(t0), . . . , φH(t0)
and bearing rates φ̇1(t0), . . . , φ̇H(t0), and these can be “triangulated” via (39) and (40) to estimate
the source motion parameters Θ in (36). An algorithm [17] for estimating φh(t0) and φ̇h(t0) is
described in Section 5 and demonstrated with measured data in Section 6.

Let us consider the signals received at the reference sensors at each array, so τhn(t) = 0 in (48):

s1

[(
1 − vr,1(t0)

c

)
t− τ1(t0)

]
, . . . , sH

[(
1− vr,H(t0)

c

)
t− τH(t0)

]
. (50)

Our modeling assumptions imply that each signal sh

[(
1− vr,h(t0)

c

)
t− τh(t0)

]
is a wide-sense sta-

tionary Gaussian random process. However, for two arrays g, h with unequal Doppler vr,g(t0) 
=
vr,h(t0), the signals at arrays g, h are not jointly wide-sense stationary [15, 18], complicating the
analytical description and the CRB performance analysis. The jointly nonstationary sensor signals
generally are not characterized by a cross-spectral density matrix, so the CRB is not the inverse of
a FIM of the form (15). An approximate CRB analysis for TDE with jointly nonstationary signals
as in (50) is given in [15]. The CRB analysis is rigorously justified in [18] and extended to CRBs on
differential Doppler. A clever transformation is used in [18] so that the jointly nonstationary signals
in (50) are locally modeled by a CSD of the form (14), and it is shown that the representation is
accurate for CRB analysis.



We can formulate the results in [18] for the case of partially coherent signals4, leading to the
following for H = 2 arrays, assuming large time-bandwidth product (much larger than the coherence
time of the signals and noise). We define the TDE D12 = τ1(t0)−τ2(t0) and the differential Doppler
∆v12 = vr,1(t0) − vr,2(t0).

• Estimation of TDE and differential Doppler are decoupled, so the CRB on D12 is given by
(25), which is identical to the non-moving source case.

• The threshold coherence analysis for TDE in (31) and Figure 3 extends to the moving source
case. In the best case that Doppler effects are perfectly estimated and compensated, the
TDE problem that remains is identical to the non-moving source case. Doppler estimation
is less demanding in terms of time-bandwidth product compared with TDE. Indeed, Doppler
estimation is possible with sinusoidal signals [18] that have negligible bandwidth.

• The CRB on differential Doppler [18], modified for partially-coherent signals and assuming
SNRc,1(ω) = SNRc,2(ω) = SNRc(ω), is

CRB(∆v12) =
24π
T

(
c

T

)2
[
2
∫ ωs

0

ω2 SNRc(ω)2

1 + 2 · SNRc(ω)
dω

]−1

. (51)

Note that (51) is a scalar multiple of the CRB on TDE in (25). However, the CRB on
differential Doppler may be achievable in scenarios in which the time-bandwidth product is
insufficient for TDE.

Interestingly, differential Doppler provides sufficient information for source localization, even
without TDE, as long as five or more sensors are available [18]. Thus the source motion may
be exploited in scenarios where TDE is not feasible, such as narrowband signals [18].

• We discussed TDE with H > 2 sensors in Section 3.3, concluding that pairwise processing of
TDEs D1H , . . . ,DH−1,H with a reference sensor H is nearly optimum for scenarios of interest.
A similar result holds for differential Doppler estimation [18], where pairwise estimation of
∆v1H , . . . ,∆vH−1,H is nearly as accurate as estimation of all pairs ∆vgh, as long as H ·
SNRc(ω) � 1.

5 AN ALGORITHM

The parameters that can be directly estimated from the sensor data are the bearings φ1(t0), . . .,
φH(t0), bearing rates φ̇1(t0), . . . , φ̇H(t0), pairwise time differences D1H = τ1(t0) − τH(t0), . . .,
DH−1,H = τH−1(t0) − τH(t0), and differential Doppler ∆v1H = vr,1(t0) − vr,H(t0), . . . ,∆vH−1,H =
vr,H−1(t0)− vr,H(t0). Equations (39), (40), (46), (47) define the nonlinear relations that “triangu-
late” these parameters and relate them to the source motion parameters Θ = [xs,0, ẋs, ys,0, ẏs]T .

A distributed processing algorithm is outlined below, and parts of the algorithm are illustrated
with measured aeroacoustic data in the next section.

1. Use the local polynomial approximation (LPA) beamformer [17] at each array to estimate
the bearings and bearing rates. The LPA beamformer in [17] is formulated for narrowband
processing, and it is a generalization of the classical beamformer to moving sources. We
extend it in a straightforward way to wideband signals by incoherently averaging the LPA
beampatterns at different frequencies.

4The signal coherence between the signals at arrays g and h in (50) is defined assuming perfect compensation of
the Doppler compression αg, αh, thus yielding the definition in (7).



2. Solve (39), (40) to obtain initial estimates of the source motion parameters Θ. These estimates
correspond to incoherent triangulation of the bearings and bearing rates from individual
arrays.

3. Estimate the Doppler compression factors α1, . . . , αH , compensate for Doppler, and test
whether the signals at distinct arrays have sufficient coherence, fractional bandwidth, and
time-bandwidth product to enable TDE between arrays (see Section 3.1 for the conditions).

4. If the conditions are not met, then incoherent triangulation of the bearings and bearing rates
is nearly optimum, and further joint processing is not informative.

5. If the conditions are met, then identify a reference array H (the array with maximum SNR)
and estimate the time differences D1H , . . ., DH−1,H and differential Dopplers ∆v1H , . . .,
∆vH−1,H . Many estimation methods have been studied for this problem, e.g., [19]-[27]. The
maximum likelihood solution involves wideband ambiguity function search over Doppler and
TDE [15], while the deskewed short-time correlator [22] is a computationally simpler approx-
imation.

6. A suboptimum procedure is to avoid the joint Doppler and TDE estimation in the preceding
step, and instead use the initial Doppler estimates from steps 1 and 2 and perform TDE after
approximate Doppler compensation. With this approach, triangulation of the TDEs via (47)
will improve the estimates of xs,0 and ys,0 only (and not the source velocity ẋs, ẏs).

7. If multiple sources are present, then the LPA beamformer in step 1 may be used to separate
the source signals at each array prior to Doppler/TDE estimation. We note that wideband
beamforming algorithms for non-moving source models are presented in [28, 29] and [30]-[32].

The LPA beamformer in steps 1 and 7 is illustrated in the next section for a two-source scenario
based on measured aeroacoustic data. Examples of TDE with Doppler compensation (step 5) are
presented in [33].

6 EXAMPLE WITH TWO MOVING SOURCES

We present an application of the local polynomial approximation (LPA) beamformer [17] to mea-
sured aeroacoustic data with two ground vehicles: M1 and M3 tanks. The vehicle trajectories over
a 10 second segment are shown in Figure 5a. Two arrays, labeled 8B and 8C, are separated by
about 23 m. Each array is circular with N = 7 sensors, 4-ft radius, and six sensors equally spaced
around the perimeter with one sensor in the center. We present results based on processing the
data at array 8B, for which the bearing and bearing rate of the sources are shown in Figure 5b.
The bearing of the M3 varies by more than 30◦ over the 10 second time interval. The range of the
M3 is closer at about 100 m, with the M1 range at approximately 200 m.

The data from array 8B is processed over a wide bandwidth from 30 to 150 Hz. The beampat-
tern for a classical beamformer based on a non-moving source model is shown in Figure 5c. The
beampattern is the incoherent sum of narrowband beampatterns over the 30 to 150 Hz frequency
band. The peak of the beampattern is located at approximately the mean bearing of the stronger
source (M3) over the 10 second interval.

The beampattern of the LPA beamformer is shown in Figure 6a. The LPA beampattern exploits
a first-order model for time-varying bearing, as in (49). The LPA beampattern is two-dimensional,
with axes of initial bearing φ(t0) and and bearing rate φ̇(t0). The LPA beamformer in [17] is



formulated for narrowband processing, so we extend to the wideband case by incoherently adding
the narrowband LPA beampatterns over the frequency range. The peak of the beampattern in
Figure 6a is close to the true values of φ(t0), φ̇(t0) for the M3 that are shown in Figure 5b. The
location of the weaker M1 source is not evident in the LPA beampattern in Figure 6a, so we subtract
an estimate of the stronger source from the data. The subtraction is performed based on the
bearing and bearing rate estimates from Figure 6a. The subtraction is coherent over the processing
bandwidth and includes the time-varying bearing. The LPA beampattern after subtraction is shown
in Figure 6b, which indicates the bearing and bearing rate of the weaker M1 source. This example
illustrates the gain in resolution that is achieved by exploiting the source motion in a beamformer.

7 CONCLUDING REMARKS

The potential gain in source localization accuracy when data from distributed arrays is processed
jointly and coherently is quantified by the CRBs presented in this paper. The amount of improve-
ment and the feasibility of achieving the improvement depend critically on the scenario, which is
characterized by the coherence between source signals arriving at distributed sensors, the signal
bandwidth and spectrum shape (wideband vs. harmonic), the observation time for coherent pro-
cessing, the noise level, the source motion parameters (velocity, complexity of maneuvers), and the
number of sources. In feasible scenarios in which the time-bandwidth product is large enough to
enable TDE, we presented an algorithm that requires moderate communication bandwidth between
sensors. The processing involves estimation of bearing and bearing rate at individual arrays, and
estimation of time delay and differential Doppler between pairs of arrays.

References

[1] R.R. Tenney and J.R. Delaney, “A distributed aeroacoustic tracking algorithm,” Proc. American Con-
trol Conf., pp. 1440-1450, June 1984.

[2] Y. Bar-Shalom and X.-R. Li, Multitarget-Multisensor Tracking: Principles and Techniques, YBS, 1995.

[3] A. Farina, “Target tracking with bearings-only measurements,” Signal Processing, vol. 78, pp. 61-78,
1999.

[4] B. Ristic, S. Arulampalam, C. Musso, “The influence of communication bandwidth on target tracking
with angle only measurements from two platforms,” Signal Processing, vol. 81, pp. 1801-1811, 2001.

[5] L.M. Kaplan, P. Molnar, Q. Le, “Bearings-only target localization for an acoustical unattended ground
sensor network,” Proc. SPIE AeroSense, Orlando, Florida, April 2001.

[6] R.J. Kozick and B.M. Sadler, “Distributed Sensor Array Processing of Wideband Acoustic Signals,”
1999 Meeting of the IRIS Specialty Group on Battlefield Acoustics and Seismics, Laurel, MD, September
13-15, 1999.

[7] R.J. Kozick and B.M. Sadler, “Algorithms for Localization and Tracking of Acoustic Sources with
Widely Separated Sensors,” Proc. 2000 Meeting of the MSS Specialty Group on Battlefield Acoustics
and Seismics, Laurel, MD, October 18-20, 2000.

[8] B. Friedlander, “On the Cramer-Rao Bound for Time Delay and Doppler Estimation,” IEEE Trans.
on Info. Theory, vol. IT-30, no. 3, pp. 575-580, May 1984.



−50 0 50 100 150
0

20

40

60

80

100

120

140

160

180

200

EAST (m)

N
O

R
T

H
 (

m
)

VEHICLE PATHS AND ARRAY LOCATIONS: 710 to 720 SEC

M 1      
M 3      
ARRAY 8 B
ARRAY 8 C

710 711 712 713 714 715 716 717 718 719 720
−20

0

20

40

60

80

100

120

TIME (sec)

B
E

A
R

IN
G

 (
de

g)

BEARING B

M 1
M 3

710 711 712 713 714 715 716 717 718 719 720
0

1

2

3

4

5

TIME (sec)

B
E

A
R

IN
G

 R
A

T
E

 (
de

g/
se

c)

BEARING RATE B

M 1
M 3

(a) (b)

−20 0 20 40 60 80 100 120
116

117

118

119

120

121

122

123

124

BEARING (deg)

B
E

A
M

P
A

T
T

E
R

N
 (

dB
)

CLASSICAL BEAMFORMER B

(c)

Figure 5: (a) Array locations and trajectory of M1 and M3 vehicles over a 10 second time interval.
(b) Bearing and bearing rate of sources with respect to array 8 B. (c) Beampattern of classical
beamformer based on non-moving source model.



−20 0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

BEARING

B
E

A
R

IN
G

 R
A

T
E

LPA BEAMFORMER B

−20 0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

BEARING

B
E

A
R

IN
G

 R
A

T
E

LPA BEAMFORMER (WEAK SOURCE)

(a) (b)

Figure 6: (a) Beampattern of LPA beamformer, showing the location of the stronger source (M3).
(b) Beampattern of LPA beamformer after subtracting an estimate of the strong source signal from
the data, showing the location of the weaker source (M1).

[9] P. Whittle, “The analysis of multiple stationary time series,” J. Royal Statist. Soc., vol. 15, pp. 125-139,
1953.

[10] S.M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice-Hall, 1993.

[11] G.C. Carter (ed.), Coherence and Time Delay Estimation (Selected Reprint Volume), IEEE Press, 1993.

[12] I. Cespedes, J. Ophir, S.K. Alam, “The combined effect of signal decorrelation and random noise on the
variance of time delay estimation,” IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control,
vol. 44, no. 1, pp. 220-225, Jan. 1997.

[13] A.J. Weiss and E. Weinstein, “Fundamental limitations in passive time delay estimation - part 1:
narrowband systems,” IEEE Trans. Acoust., Speech, Sig. Proc., vol. ASSP-31, no. 2, pp. 472-485, April
1983.

[14] E. Weinstein, “Decentralization of the Gaussian maximum likelihood estimator and its applications to
passive array processing,” IEEE Trans. Acoust., Speech, Sig. Proc., vol. ASSP-29, no. 5, pp. 945-951,
October 1981.

[15] C.H. Knapp and G.C. Carter, “Estimation of time delay in the presence of source or receiver motion,”
J. Acoust. Soc. Am., vol. 61, no. 6, pp. 1545-1549, June 1977.

[16] W.B. Adams, J.P. Kuhn, W.P. Whyland, “Correlator compensation requirements for passive time-
delay estimation with moving source or receivers,” IEEE Trans. Acoust., Speech, Signal Processing,
vol. ASSP-28, no. 2, pp. 158-168, April 1980.

[17] V. Katkovnik and A.B. Gershman, “A local polynomial approximation based beamforming for source
localization and tracking in nonstationary environments,” IEEE Signal Processing Letters, vol. 7, no.
1, pp. 3-5, Jan. 2000.

[18] P.M. Schultheiss and E. Weinstein, “Estimation of differential Doppler shifts,” J. Acoust. Soc. Am.,
vol. 66, no. 5, pp. 1412-1419, Nov. 1979.



[19] B.V. Hamon and E.J. Hannon, “Spectral estimation of time delay for dispersive and non-dispersive
systems,” Applied Statistics, vol. 23, issue 2, pp. 134-142, 1974.

[20] J.A. Stuller, “Maximum-likelihood estimation of time-varying delay - part I,” IEEE Trans. Acoust.,
Speech, Signal Processing, vol. ASSP-35, no. 3, pp. 300-313, March 1987.

[21] J.A. Stuller and N. Hubing, “New perspectives for maximum likelihood time-delay estimation,” IEEE
Trans. on Signal Processing, vol. 45, no. 3, pp. 513-525, March 1997.

[22] J.W. Betz, “Comparison of the deskewed short-time correlator and the maximum likelihood correlator,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-32, no. 2, pp. 285-294, April 1984.

[23] L.G. Weiss, “Wavelets and wideband correlation processing,” IEEE Signal Processing Magazine, pp.
13-32, Jan. 1994.

[24] M. Wax, “The joint estimation of differential delay, Doppler, and phase,” IEEE Trans. on Information
Theory, vol. IT-28, no. 5, pp. 817-820, Sept. 1982.

[25] S. Stein, “Differential delay/Doppler ML estimation with unknown signals,” IEEE Trans. on Signal
Processing, vol. 41, no. 8, pp. 2717-2719, Aug. 1993.

[26] Q. Jin, K.M. Wong, Z.-Q. Luo, “The estimation of time delay and Doppler stretch of wideband signals,”
IEEE Trans. on Signal Processing, vol. 43, no. 4, pp. 904-916, April 1995.

[27] R.J. Ulman and E. Geraniotis, “Wideband TDOA/FDOA processing using summation of short-time
CAF’s,” IEEE Trans. on Signal Processing, vol. 47, no. 12, pp. 3193-3200, Dec. 1999.

[28] K. Bell, “Separation of multiple battlefield acoustic targets using wideband DF-based adaptive beam-
forming,” 1999 Meeting of the IRIS Specialty Group on Battlefield Acoustics and Seismics, Laurel, MD,
September 13-15, 1999.

[29] K. Bell, “Wideband direction-of-arrival (DOA) estimation for multiple aeroacoustic sources,” Proc.
2000 Meeting of the MSS Specialty Group on Battlefield Acoustics and Seismics, Laurel, MD, October
18-20, 2000.

[30] T. Pham and B. M. Sadler, “Adaptive wideband aeroacoustic array processing,” 8th IEEE Statistical
Signal and Array Processing Workshop, pp. 295–298, Corfu, Greece, June 1996.

[31] T. Pham and B. Sadler, “Incoherent and coherent wideband direction finding algorithms for ground
vehicles,” 132nd Meeting of the Acoustic Society of America, JASA vol. 100, no. 4, pt. 2, p. 2636,
October 1996.

[32] T. Pham and B. M. Sadler, “Focused wideband array processing algorithms for high-resolution direction
finding,” IRIS Battlefield Acoustics Symposium, October 1998.

[33] R.J. Kozick and B.M. Sadler, “Near-Field Localization of Acoustic Sources with Imperfect Spatial Co-
herence, Distributed Processing, and Low Communication Bandwidth,” SPIE 2001 AeroSense Symp.,
Orlando, FL, April, 2001.


